+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)
↳ QTRS
↳ DependencyPairsProof
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)
+12(*2(x, y), +2(*2(x, z), u)) -> +12(y, z)
+12(*2(x, y), +2(x, z)) -> +12(y, z)
+12(*2(x, y), +2(*2(x, z), u)) -> +12(*2(x, +2(y, z)), u)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
+12(*2(x, y), +2(*2(x, z), u)) -> +12(y, z)
+12(*2(x, y), +2(x, z)) -> +12(y, z)
+12(*2(x, y), +2(*2(x, z), u)) -> +12(*2(x, +2(y, z)), u)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(*2(x, y), +2(*2(x, z), u)) -> +12(y, z)
+12(*2(x, y), +2(*2(x, z), u)) -> +12(*2(x, +2(y, z)), u)
Used ordering: Polynomial Order [17,21] with Interpretation:
+12(*2(x, y), +2(x, z)) -> +12(y, z)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
POL( +12(x1, x2) ) = max{0, x2 - 3}
POL( +2(x1, x2) ) = x1 + 3x2 + 3
POL( *2(x1, x2) ) = x1 + 2x2 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
+12(*2(x, y), +2(x, z)) -> +12(y, z)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(*2(x, y), +2(x, z)) -> +12(y, z)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
POL( +12(x1, x2) ) = x1 + 2x2 + 2
POL( +2(x1, x2) ) = x1 + x2 + 3
POL( *2(x1, x2) ) = x1 + x2 + 3
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(*2(x, y), +2(x, z)) -> *2(x, +2(y, z))
+2(*2(x, y), +2(*2(x, z), u)) -> +2(*2(x, +2(y, z)), u)